CLASSQ-L: A Q-Learning Algorithm for Adversarial Real-Time Strategy Games

نویسندگان

  • Ulit Jaidee
  • Héctor Muñoz-Avila
چکیده

We present CLASSQ-L (for: class Q-learning) an application of the Q-learning reinforcement learning algorithm to play complete Wargus games. Wargus is a real-time strategy game where players control armies consisting of units of different classes (e.g., archers, knights). CLASSQ-L uses a single table for each class of unit so that each unit is controlled and updates its class’ Qtable. This enables rapid learning as in Wargus there are many units of the same class. We present initial results of CLASSQ-L against a variety of opponents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

Introducing Hierarchical Adversarial Search, a Scalable Search Procedure for Real-Time Strategy Games

Real-Time Strategy (RTS) video games have proven to be a very challenging application area for Artificial Intelligence research. Existing AI solutions are limited by vast state and action spaces and real-time constraints. Most implementations efficiently tackle various tactical or strategic sub-problems, but there is no single algorithm fast enough to be successfully applied to full RTS games. ...

متن کامل

Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism

This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...

متن کامل

Experiments with Game Tree Search in Real-Time Strategy Games

Game tree search algorithms such as minimax have been used with enormous success in turn-based adversarial games such as Chess or Checkers. However, such algorithms cannot be directly applied to real-time strategy (RTS) games because a number of reasons. For example, minimax assumes a turn-taking game mechanics, not present in RTS games. In this paper we present RTMM, a real-time variant of the...

متن کامل

Adversarial Hierarchical-Task Network Planning for Real-Time Adversarial Games

Real-time strategy (RTS) games are hard from an AI point of view because they have enormous state spaces, combinatorial branching factors, allow simultaneous and durative actions, and players have very little time to choose actions. For these reasons, standard game tree search methods such as alphabeta search or Monte Carlo Tree Search (MCTS) are not sufficient by themselves to handle these gam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012